Modeling and Interpreting Expert Disagreement About Artificial Superintelligence

by | 12 December 2017

View in Informatica

Artificial superintelligence (ASI) is artificial intelligence (AI) with capabilities that are significantly greater than human capabilities across a wide range of domains. A hallmark of the ASI issue is disagreement among experts. This paper demonstrates and discusses methodological options for modeling and interpreting expert disagreement about the risk of ASI catastrophe. Using a new model called ASI-PATH, the paper models a well-documented recent disagreement between Nick Bostrom and Ben Goertzel, two distinguished ASI experts. Three points of disagreement are considered: (1) the potential for humans to evaluate the values held by an AI, (2) the potential for humans to create an AI with values that humans would consider desirable, and (3) the potential for an AI to create for itself values that humans would consider desirable. An initial quantitative analysis shows that accounting for variation in expert judgment can have a large effect on estimates of the risk of ASI catastrophe. The risk estimates can in turn inform ASI risk management strategies, which the paper demonstrates via an analysis of the strategy of AI confinement. The paper find the optimal strength of AI confinement to depend on the balance of risk parameters (1) and (2).

Academic citation:
Seth D. Baum, Anthony M. Barrett, and Roman V. Yampolskiy, 2017. Modeling and interpreting expert disagreement about artificial superintelligence. Informatica, vol. 41, no. 4 (December), pages 419-427.

View in Informatica

Image credit: Aler Kiv


This blog post was published on 28 July 2020 as part of a website overhaul and backdated to reflect the time of the publication of the work referenced here.

Author

Recent Publications

Climate Change, Uncertainty, and Global Catastrophic Risk

Climate Change, Uncertainty, and Global Catastrophic Risk

Is climate change a global catastrophic risk? This paper, published in the journal Futures, addresses the question by examining the definition of global catastrophic risk and by comparing climate change to another severe global risk, nuclear winter. The paper concludes that yes, climate change is a global catastrophic risk, and potentially a significant one.

Assessing the Risk of Takeover Catastrophe from Large Language Models

Assessing the Risk of Takeover Catastrophe from Large Language Models

For over 50 years, experts have worried about the risk of AI taking over the world and killing everyone. The concern had always been about hypothetical future AI systems—until recent LLMs emerged. This paper, published in the journal Risk Analysis, assesses how close LLMs are to having the capabilities needed to cause takeover catastrophe.

On the Intrinsic Value of Diversity

On the Intrinsic Value of Diversity

Diversity is a major ethics concept, but it is remarkably understudied. This paper, published in the journal Inquiry, presents a foundational study of the ethics of diversity. It adapts ideas about biodiversity and sociodiversity to the overall category of diversity. It also presents three new thought experiments, with implications for AI ethics.

Climate Change, Uncertainty, and Global Catastrophic Risk

Climate Change, Uncertainty, and Global Catastrophic Risk

Is climate change a global catastrophic risk? This paper, published in the journal Futures, addresses the question by examining the definition of global catastrophic risk and by comparing climate change to another severe global risk, nuclear winter. The paper concludes that yes, climate change is a global catastrophic risk, and potentially a significant one.

Assessing the Risk of Takeover Catastrophe from Large Language Models

Assessing the Risk of Takeover Catastrophe from Large Language Models

For over 50 years, experts have worried about the risk of AI taking over the world and killing everyone. The concern had always been about hypothetical future AI systems—until recent LLMs emerged. This paper, published in the journal Risk Analysis, assesses how close LLMs are to having the capabilities needed to cause takeover catastrophe.

On the Intrinsic Value of Diversity

On the Intrinsic Value of Diversity

Diversity is a major ethics concept, but it is remarkably understudied. This paper, published in the journal Inquiry, presents a foundational study of the ethics of diversity. It adapts ideas about biodiversity and sociodiversity to the overall category of diversity. It also presents three new thought experiments, with implications for AI ethics.